"“"'-Park Cal:forma 94025" u:s.

A BEST-FIRST PARSER

by

William H. Paxton
Artificial Intelligence Center

Technical Note 92
SRI Project 1526

Proceedings IEEE Speech Symposium, Carnegie-Mellon University, Pittsburgh,
- Peunsylvania, April 15-18, 1974.

The work reported herein was sponsored by the Advanced Research Projects
Agency ot the Department ol Delense under Contract DAHCO1-72-C-0009 with
the U. S, Army Research Office.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
APR 1974 2. REPORT TYPE 00-00-1974 to 00-00-1974
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Best-First Parser 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International,333 Ravenswood Avenue,M enlo Park,CA,94025 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A parser for n speech under standing system isdescribed. The parser uses a best-first strategy in which
alternative paths are assigned priorities and paths are suspended aslong asthereisn higher priority
alternative to explore. Discussions areincluded on the types of stepsin Il parse, the assignment of priorities,
cooper ation nmong competing par ses, and experimental results.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 9
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

) *

A BEST-FINST PARSER
#illiem H, Foxton
Artificial Intelligence Center
Stenford Regearch Instltute
Henle Park, Californin

Abstract

A pargser for s speech understanding system 1s de-
seribed, The purser uges & best-first strotegy in
which aslternative paths sre essigned priorities and
paths ara suspended as long as there 1s o higher pri-
ority nlternative to explore. Discussions are included
on tha types of steps in a parse, the assignment of
priorities, cooperation nmong competing parses, nd ex-
perimental resuits.

Introduction

This paper describes 8 parser developed ot Stanw
tord Research Institute (SRI) as part of ongolng
re#search in gpeech understanding systems. The psrser
uses a hest-first stretegy in searching for an op-
propriste psyse. This stretegy and our initisl system
using it heve been described elsewhere. {%ee nlso
Reference 2 for an overview of the entire system.) To
review briefly, each new psth from i thoice point reached
in the grammar is assigned o priority for further proces-
sing. The paths nre then asdded to the set of all paths
that have been generated but not yet extendod during
this parse. The system follows the highest priority
path from the comprehensive set until its prioxity
drops or it reaches a choice point. This cycle repeats
until 8 parse is found or some resource bouad is reached.

The key features of this epprosch are the ussigning
of priorities at each sted along 2 path and the sus-
pending of paths when there 1s an alternative avallable
with o higher priority. This paper deseriles the types
of'gteps in a parse, the assigament of priorities for
the different types of gteps, & Iacility allowing com-
peting parses to cooperste, end ab eXperiment demone
strating the vaiue of the best-first approach,

Types of Steps in & Parse

Figure @ shows the successful path token by the
system in reachiang & gorrect parse of the test ulterance
to be considered in this paper: “What little brass
parts are in the box?" (The parser's exploration of
alterpatives to this path 1s an pdded complleation that
will be discussed loter.}) Zach step along the path is
given & pame in the left eoslusn gnd s step pricority in
the ccnter column, The right columa shows the cumula-
tive pr10r1t§ that equals 1000 times the product of tha
step priorities up tu that point, It is the cumualative
priority that is used by the system te choose which
poth to extend next.

*The work reported hereln was sponsored by the Advanced
Research Projects Agetcy of the Depariment of Defense
undar Contract DAHCO4-72-C-0009 with the U.5. Army
Rescarch Ciflee.

Fhere are four bagle types of ateps along the path--
syntsctie, lexical, word verification, and Interparse
cooperation., Syntactic steps reflect the selectlon of
a particulsr gremmatical constyruction and are isbeled
with the nsme from the grammar for that alternative,
For example, the second step 1s labeled QUEST and cor-
responds to the path 4in the grammoar for gquestlions as
oppased to imperntives or deelaratives. Lexical steps
invalve the cholee of a partfcular word from a pre-
dicted class, The rows In the figure labeled with
words from the test sentence ore the lexical steps.
Inmediately following each lexical step 18 o word veri~-
fication step labeled *VRFY*. During these steps, pro-
posed words are matched against the acoustlc date in a
manner described in another paper in this symposium.”
Finslly, the steps lebeled #FPARSE* reflect interacw-
tions among «ooperating parses when u constituent has
been found,

En general, syntactlc and lexicel steps cause the
cumulative priority to drop, interparsé coeoperation
stops lesve the prisyities unchanged, asd word verifi-
cation steps potentially cause the priority to risge,
The net result is that the syastem agtivity tends to
focus around words recoghized in the utterance without
being compslled to sxplore mll possibllities befors
gonsidering something else, The following sectiong
describe the priority functions for syntsctic and
lexival steps, the procedures for edjusting prioritles
after word verification, pnd the facilities for interw
parse fooperation.

Syntagtic snd Lexical Priority Functiong

Assotinted with sach syntactlc and léxical slterna-
tive is & function to compute the priority of thot al-
ternative, Functions for different alternatives can
call on different pources of Knowledge und consider
different sspects of the contoxt. This provides a
Tlexible mechanism for integrazting s varicty of
knowledge sources snd ensuring thst the relevant tests
are wade st the sppropriste places, Our system Cure
rently ineludes priority fumetlons that use guch in-
formation as aemantle feotures, case grammgr, rules of
anaphoric reference, and the system’s interaazl model
of the world. We plan to increasc the use of these
gsourges and to add new ones auck ss prosodic informas
t1ion* and dinlog asnd task models,®

As dgn illustration of laxlcal pricrity functions
currently in use, we will describe the procedure for
nouns, 1in determining the pricrity for z noun, two
tests are made: one for number agreement and one for
semantic agreement, 'The noun receives low priority if
it conflicts in mumber with 1ts context, For example,
8 copflict occurg 1f the context specificmlly requires
g sipgulsr noun and the poun in question is plural.
Items raievant for number ggregment wilth npuns include
articles (e.g., "a" with s singular noun}, demonstra-
tives (e,g., "this" with a singular noun; "these” with

@ plural noun}, quantifiers (e.g., "gach" with a singu-
lar noun; “"all" with a plural noun), and verbs (if the
noun is to be the subject of the verb). The second step
in esfablishing the lexical priority for nouns is to
comparc the semantiec features of the noun with the se-
mantic features rcquired by the context, and to lower
the priority if the features do not match., Items rele-
vant for semantic sgreement with nouns include adjec-
tives (1f the noun is to be modifled by the adjective),
prepositions (1if the noun is to be the object of the
preposition), and verbs (if the noun is to occur in the
case frume of the verbih Finally, 1f both number agree-
ment and semantic oagreement are satisfactory, the noun
1s given a high priority.

To illustrate syntactic priority functions, we
will describe the procedure that computes the priority
for modifiers after a noun phrase. Actually, this
procedure produces two prilorities--one for amccepting
the phrase as 1t stands and one for finding at least
one more modifier,

There are three stages in computing the priorities.
First, acoustic dota are inspected to determine the
distance to the end of the utterancec; 1f little of the
utterance remains to be parsed, then the priority for
further modifiers is lowered. (Eventually more sophis-
ticated prosedic analysis will replace this simple
end-of-utterance test.,) Second, the case frame 1s con-
sulted to determine whether there are obligatory cases
remaining to be parsed, and, if so, the priority for
further modiflers is lowercd nccording to the general
heuristic of giving obligatory elements higher priority.
Third, for & definite noun phrase (such as ones be-
ginning with "the” or "these”), additional adjustments
to the priorities are made depending on the nunber of
referents presupposed by the phrase, the number of
referents possible according to the world model, ond
the number of referents nccording to the rules of
anaphoric reference,

In the above third stoge, there are two main cases
to consider: first, one in which a particular number
of referents 1s presupposed (as in ''these two bolts"
or "this box"); second, one for plurals without n
specific number. In each case, there are three rele-
vant subcases depending on whether the correspondence
between the phrase and items in the world model 1is
consistent and unambiguous, inconsistent, or ambiguous,

1n the first cose, with o spcecific number presup-
posed, if the correspondence 15 consistent and unam-
biguous--that is, the presupposed number equals the
number of possible referents determined either by the
world model or by anaphoric reference--then the phrase
can be understood as 1t stands. Accordingly, the
priority for further modifiers is lowered, and the con-
verse priority is rmised,

If the correspondence 1s inconsistent--that is,
the presupposed number 1s greater than the number of

E
The coge frame includes tbe subject and any other

noun phrases occurring as semantic arguments of the
verb, The case grammar in our system is similar to

that described by Celce-Murcia.”

possible referents in the world meodel--then something
is probably wrong, and both priorities are lowered,

1f tbe correspondence is ambiguoug--that is, the
presupposed number is less than the number of possible
referents in the world model but the rules of anaphora
cannot pick out an appropriate subset--then the priority
for further modifilers is raised in expectation that the
speaker will provide a disambiguating qualifier.

In the second case, corresponding to plurnlxdefinite
noun phrases without a specific number, 1f the corre-
spondence is consglstent and unombiguous--thaot 1s, the
rules of anaphora can pick out a group of referents--
then the phrase can be understood as it 1s and the
priority for further modifiers is lowered,

1f the correspondence is lnconsistent--that 1is,
there are fewer than two possible referents according
to the world model--then something is probably wrong,
and both priorities are lowered.

If the correspondence is ambiguous--thet is, there
are multiple referents in the world model but anaphora
cannot pick out an approprieste subset--then the phrase
may be intended to refer to ell the possible referents,
or o modifier may follow that will narrow the possibili-
ties., Because of thie ambigulty, both priorities are
set to a moderate level,

While the description given above shows that the
priority function for noun phrose modifiers has reached
a modest level of complexity, the overall level of
sophistication of priority functions in the system is
st111 low, Most of them simply return a fixed value
determined by the gremmar writer's intuition of the
likelihood of the alternative and the cost of exploring
it. We do not yet have s full set of priority functions
that iﬂcorporate 8 substontial amount and variety of
knowledge, but initial experiments suggest that the rudi-
mentary functlons we do have are alréady having & bene~-
ficial impact on the performance of the system, Before
discussing these results, however, we must consider the
procedures for adjusting priorities after o word has
been verifled.

Verificetlon Priorities

It 1s a basic principle of our best-first parser
that syntactic and lexlcal priority functions return
values less then 1,0 and thus cause the cumulative
priority to drop. This principle helps prevent the
system from getting trapped exploring false paths, but,
if not balanced, 1t would have the bad effect of
penalizing long paths that may be nearing successful
completion, A natural choice to offset the lowering of
priorities by syntoctic and lexicnl steps 1s to ralse
the priority of paths that have led to successful identi-
fication of words in the input. Long paths using many
words will then be given high priorities reflecting both
the likelihood that they are correct and the cost of
creating them. When a word 1s found it will become &
focal point of activity ns long as likely extensions
to that path exist,

The question of how much the priorlty should be

raised remains: Too great an lncrease will lead to

problems with false paths, while toc small an increase
will lead to unfocused activity. Our solution has been
to raise the priority an amount proportional to the
confidence that the word has been correctly recognized.
Two factors enter into thls computation. the tendency
of the particular word to lead to false recognitions
and the score between 0 and 1 returned by the word
verification routines, 1lndicating how well the word
motched. JIdeally, the system would know or be able to
compute the likelihood of false acceptance for each
word in the lexicon., Lacking such thorough data, we
have simply divided the words into two classes commonly
referred to as function and contcnt words., Function
words, such as articles and prepositions, tend to have
a high rate of false acceptances because of their small
size and lack of stress, sco the maximum allowed increase
in priority after recognizing a function word is only
25 percent. (Speclfically, the step priority for veri-
fication of a function word 1s 1.25 times the word
verification score.)} Content words, such as nouns and
adjectives, are less likely to be falsely accepted,

and so the maximum increase anllowed for them is 60
percent. The values of 25 percent and 60 percent were
arrived at empirically and seem to result in tbe de-
sired behavior,.

A final factor to be considered after word veri-
ficatlon 1s the alignment with the sdjaccnt word. The
word verification process returns beginning and ending
boundarles as well as a score, Because of the struc-
ture of the word verification algorithms, there can be
an ovcrlap of the end of one word with the beginning
of the next, which results, for exmmple, from a shared
segment. More seriously, there is nlso the possibility
of a gap between the words containing a portion of the
utterance not recognized as part of either., The system
ignores small gaps up to 30 milliseconds in length and
gives increasing penalties to larger gaps up to a maxi-
mum allowed gap of 200 milliseconds, Similarly, over-
laps of up to 100 milliseconds are ignored, but penal-
ties are aasigned to larger overlaps up to a maximum
of 300 milliseconds. Gaps or overlaps greater than
the maximums cause the path to be permanently abandoned,

These procedures for penalizing gaps and overlaps
are 1n the system only as temporary expedients. They
willl be replaced by phrase verification procedures ex-
plicitly designed to deanl with interword coarticulation
that will check whether the adjacent words really do
fit together acoustically and give a reasoned justifi-
cation for any apparent gap or overlap.

Interparse Cooperation

We have now discussed three of the four types of
steps taken by the parser: syntactic, lexical, and
word verification steps, The final type reflects a
special mechanism for interparse cooperation. There
sre three ways in wbich competing parses cooperate in
the current system; results of word verification are
reused, successful parsing of a constitucnt leaves a
map to guide later attempts, and the effort to find
certain basic constituents is shared among all parses,
The first two mechanisms have been described else-
where,1 g0 we will limit our discussion to the third.

it 15 not uncommon for different paths to reach
the same polnt in the utterance looking for the same
type of constituent. There is potentially a large
amount of duplicated effort as essentially the same
alternatives are considered for each of the paths, No
duplication of effort will occur, however, if all the
paths reuéhing a particular point in the utterance and
looking for a particular constituent share the results
of a single search effort rather than carrying out in-
dependent searches., An approach to parsing that em-
phasizes such cooperative searches has been described
by Kaplan,® and we have implemented a similar scheme
in our system.

The set of parses that have reached a certain
point looking for a certain type of constituent will
be called the consumers for that constituent at that
point. For each set of consumers, there is a corre-
sponding set of producers carrying out a search for
instances of the constituent. The producers are parses
following the different patbs through the grammar for
the constituent; they are assigned prioritles just like
other parses being considered by the system. When tbe
first consumer arrives, a new family 1s created con~-
sisting of a single parse starting at the root of the
constituent grammar and having a priority egqual to that
of the consumer. When a producer reaches completion,
the resulting constituent is made available to all of
the consumers, The constituent 1s also rccorded as a
product of the family nond offered to any new consumer
that arrives,

The calculation of priorities within a family of
producers is complicated by the fact that, 1n general,
different consumers have different syntactic restric-
tions and semantic preferences and thcse differences
should be reflected in the priorities of the producers.
Morcover, 1t must be possible to revise priorities when
8 new consumer arrives wilth new demands.

These goals are achieved in the following way.
Each producer gets its priority to the maximum over the
set of consumers of tbe priority of the producer with
respect to the requirements of that partliculsar consumer
(Equation 1).

producer _

MAXTMUM priority of producer)
priority " consumers (

. 1
wrt consumcr /)

The priority with respect to a certain consumer is the
priority of that consumer times the product over the
steps taken by the producer of the step priority with
respect to that consumer (Equation 2).

priority of producer _

consumer PRODUCT(step priority
wrt consumer ~ priority

ateps wrt consumer).(z)

The step priority with respect to a certain consumer

is calculated by using data regarding the consumer in
making any context-dependent decisions. Since not all
of the decisions entering into the calculation of the
step priority depend on tbhe consumer, the step priority
with respect to a consumer can be viewed as the product
of a factor that is the same for all consumers and 2
second factor that is consumer dependent {(Equaticn 3).

step priority _ consﬁmer—independent consumer-dependent
wrt consumer step priority step priority

This factoring of the step priority in turn allows the
overall priority of the producer to be reformulated as
the produet of a consumer-ingdependent factor and the
moximm of a set of consumer-dependent factors {(Equa-
tions 4a,b,c).

producer _ consumer-independent

priority factor
MAXTMLM consumer—dependent
consumers | factor ° (4a)

consuner-independent - PRODUCT fconsumer-independent

factor steps step priority
(4b)
consumer-dependent _ consumer
factor T priority *
PRODUCT consumer~dependent
Bteps step priority . (4c)

This formulation of the producer priority shows
what must be donc when a new consumer arrives, The
consumer-dependent factor for the new consumer is cal-
culated, and if it is greater than that for any of the
previous consumers, then the preoducer's priority is
raised accordingly. In this way, the work to accommo-
date o new consumer 1s essentlally redueed to the
consumer-dependent computations; all that can be
shared is,

An additional c¢onsequence of this method of com-
puting producer priorities is that each producer is
glven the maximum priority its path would have recelved
had the consumers actually carried out independent
searches., This means that;, although the searches for
the various consumers have been merged, no step 1s
taken in the combined search that would not have been
taken in at least one of the independent searches,
Interparse cooperation has been achieved without sacri-
ficing the guldance provided by context-dependent
pricrities.

A final issue is the assignment of prilorities to
the palring of a particular consumer with a particular
constituent. Such pairings are made in two situations:
when a new constituent is produced, 1t is paired with
eneh consumer; when a new consumer arrives, 1t is
paired with each constituent already produced. The
priority for a paeiring equals the product of the final
consumer-independent factor for the producer of the
constituent (Equation 4b) and the final consumer-
dependent factor for the consumer of the constituent
(Equation 4e¢). This is exactly the priority that
would have resulted had the consumer independently
created the constituent, and so the use of the
producer-consumer mechanism has no effect on prilorities
outside the family of producers,

Currently, we use this mechanism only for simple
noun phrases without following modifiers, and we only
allow lexienl step priorities tc he dependent on con-
sumers.
forward context dependencies, which simplifies the im-
plementation, while at the same time it seems to he n
good size unit for such a strategy. It 1s small enough

i

The simple noun phrase has relatively straight-

| Bame:

' parts are in the box?"
" formance were used,

to be shared often and large enough to offer a sub-
stantial savings when it 1s shared, Moreover, simple
noun phrases are fundamental constituents of every ut-
terance, The sentence 13 basically a collection of
such phrases held together by a few verbs and preposi-

tions.

Of course, not all utterances will benefit equally
from this facility, For instance, in parsing the test
utterance discussed in this paper, there 1s never more
than one consumer per family; hence, no sharing takes
place. However, in contrast to this, we have observed
parses with a significant amount of sharing.
example, the parse of the sentence, "Screw a big screw
in the handle,” has two consumers for each of its noun
phrases. The two consumers correspond to the two
senses of "screw” known to the system (that of screwing
a connector, such as a bolt or screw, into a part or
socket and that of screwing & part onto o fixture, such
as a faucet), The two senses have different case
frames, and thus they are two separate paths through
the grammar, Because of this, the family produecing
the noun phrase "a big screw"” has one consumer looking
for a phrase that refers to a connector ond ancther
consumsr looking for a phrase that refers to any part.
Since screws are classified both &s parts and as con-
nectors, both consumers accept "a big screw” with a
high priority. At this point in the perse, onc sense of
the verb predicts the preposition "on" and the other
sense predicts the preposition "in."” 1n the actual
utterance, the word "in" occurs in a reduced form that
leads the word verification routines to give "in" and
“on" identical scores and ending positions. As & re-
gult, the family of producers for the final noun phrase
has two consumers: one looking for a phrase that re-
fers to a part or a soeket. Since handles are parts
but not fixtures, the second consumer 1s given a higher
priority aond the utterance is correctly understood as
"Screw & big screw in the handle.”

As an

In this utterance, significnnt.duplicntion of ef-
fort is avoided by use of the producer-consumer facility,
whereas in certain other utteranees no savings are pos-
sible and use of the facllity leads to added overhead.
Preliminary results {reported in the Appendix) suggest
that the overhead is small compared to the potential
savings and that this facility, or somethlng similar to
it, will be useful in future systems as a way of com-
bating combinatorial explosion., We are currently con-
sidering variations of thils approach that will allow
sharing with a wider varlety of constituents and provide
for consumer-dependent step priorities with syntactic
and verification steps, The two basic goals remaln the
to make competing parses cooperate, and, at the
same time, to explolt the contextual constraints in
language as a powerful heuristic.

Experimental Results

We are now ready to examine the overall performance
of the parser on the test utterance, "What little brass
Seven measures of system per-
The totnl number of syntactic and
lexical steps taken on all paths indicated the amount
of search needed to find an parse., The maximum number of
queued paths indicates the storage requirements of the

parse. The number of words predicted by the parser re-
flects how much "poking around" in the utterance oc-
curred. The number of word verification attempts 1s
the number of words predicted minus the number of times
the results of word verification were already svailable
because tbe word had previously been predicted in the
same place, Tbis measure indicates beth the actual
amount of acoustic processing ond the savings due to
sharing. The number of words found with a score
greater than zero gives an indication of the false
paths explored., The two final measures sre storage

and processor resources consumed during the parse.
These figures are inflated by the highly interpretive
implementation of the parser currently in use, but the
relative values are still of interest, The measures
are total number of LISP 1list nodes used and total
central processing unit (CPU) time,* excluding initial
acoustic processing, such as digital filtering.

For comparison, these measures were olso token
for otber configurations of the parser with the same
input, First, the parser was given a map leading it
directly down the correct path. This provides lower
bounds for the varicus measures and shows how the sys-
tem would perform if the pricrity functions were giving
perfect guldance. As a second basis for comparison,
we modified the system to a depth-first parse, to dis-
card paths with o priority below a threshold but other-
wise ignoring priorities. For realistic results, the
threshold must be set high encugh to eliminate a sub-
stantial number of paths but low encugh not to block
the desired path in more than a small percentage of
utterances. 1In the experiment we tried two levelsg--a
conservative low of 100 and a radical high of 500,

The thresheld of 500 is probably higher than would
actunlly be employed i1f a depth-first strategy were
used in practice since portions of the grammar are
made inaccessible even 1f the words leading to them
are glven perfect scores. We feel that the results
with this threshcld are indicative of the best per-
formance attainable with the depth-first method in
combination with fixed threshold pruning. 1In both of
the depth-first parses, all of the system mechanisms
The same
Results

for interparse cooperation were operative,
52 word vocabulary was used in all the tests.
of the experiment are given in Table 1.

Using the performance guided by a map as s standard,

the best-first parse took roughly three times as long,
the depth-first parse with a threshold of 500 took over
eight times as long, and the depth-first parse with a
threshold of 100 took over forty times as long. With
respect to the amount of search (indicated by the

*On a PDP-10 running under the TENEX timesharing system.
The figures for CPU time are influenced by the amount
of timesharing system activity concurrent with tbe
parse, since overhead such as core management and
scheduling are included. It has been our experience
that, even under conditions of light timesharing
system load, the values for CPU time varled by as
much as 10% from one repetition of a parse to the
next. For this reason, experimental results for CFU
time should only be viewed as rough approximations,

accurate to about * 10%,

number of syntactic and lcxienl steps), best-first used
2.6 times as much as the parse guided by & map, depth-
first with a threshold of 500 used 5.4 times as much,
and depth-first with a threshold of 100 used 26.6 times
as much, The maximum number of queued paths for the
depth-first parses 1s much lower than for best-first
since the depth-first explores and eliminates paths
rather than suspending them, This is not a significant
advantage, however, since the best-first parse did not
approach the storage limits. And 1if storage did become
a problem, low priority parses could be pruned, All
other measures consistently show the best-first sub-
stantlally outperforming depth-first with a threshold
of 500 and overwhelmingly outperforming depth-first

with 8 threshold of 100,

The results also show the best-first parse deing
surprisingly well compared with the parse with a map.
This may be becesuse of the tendency of the system to
auspend work on a false path before a great deml of ef-
fort has been expended. A detailed analysis of the
trace of the best-first parse of the test utterance
shows the following false paths:

"Are the" was suspended becnuse of & gap
penalty and was never resumed.

1)

"How'" was suspended because of poor ascoustical
match and was never resumed.

(2)

"What hondle” with no further modifiers was
killed when the alternative accepting it

could not find a following verb, The alterna-
tive leooking for furtber modifiers was given

a lower prlority and never resumed,

(3)

(4) "What one are” had its pricrity lowered be-
cause the test for number agreement shows
that the leading noun phrase eannot be the
subject of the sentence. Paths for a noun
phrase after “are” were initinlized but sus-

are
pended and were never resumed.

"What 1little box are the" was suspended be-
caouse of gap penanlty and was never resumed.

(5)

"What little handle" was given low priority
hecause of poor match for the last word, and
was never resumed.

(6)

"What little handles” was treanted in the same
way as (6) above.

(7)

"What little wrench” was treated in the same
way as (6) above,

(8)

"What 1ittle faucet" was treated in the same
way as (6) above.

(9)

(10) "What 1ittle brass wrench" was given a low

score because of gap and was never resumed,

"what little brass faucet" was treated in the
same way as {(10) above,

{11)

“What little brass part" was treated in the
same way as (3) above,

(12)

(13) "What 1little brass parts are there" was killed
because too much of the utterance remained

for this to be complete,

"What little brass parts are there on' was
given a lower pricrity because of gap and was
never resumed,

(14)

It is significant that the majority of the false paths
were suspended and never resumed rather than being
killed as a result of exploring.

In conclusion, we consider these results as evi-
dence of the value of the best-first approach in
parsing. They support our expectations that even rudi-
mentary priority functions can have a significant ef-
fect on system pcricrmance, and they suggest that more
sophisticated priority functions may be able to counter-
act the problems one would expect to be created by
larger veocabularies.

References

1. W. H. Poxton and A. E. Robinson, “A Parser for a
Speech Understanding System,” Advance Papers of
the Conference, Third International Joint Con-
ference on Artificial Intelligence, pp. 216-222,
1973.

2. D. E. Walker, "The SRI Speech Understanding
System," paper presented at IEEE Symposium on
Speech Recognition, Carnegie-Mellon University,
15-19 April 1974.

3. R. W, Becker and F. Poza, "Acoustic Processing in
the SRI Speech Understanding System, paper pre-
scnted at IEEE Symposium on Speech Recognition,
Carncgie-Mcllon University, 15-19 April 1974.

4. J. J. Robinson, "Performance Grammars,' 1BEE
Symposium on Speech Recognition, Carnegie-Mellon
University, 15-19 April 1974,

5. B. G. Deutsch, "The Structure of Task-Oriented
Dialogs,"” paper presented at IEEE Symposium on
Speech Recognition, Carnegie-Mellon University,
15-19 April 1974,

6. R. M. Kaplan, "A Multi-Processing Approach to
Natural Language,' manuscript, Department of
Psychology and Social Relations, Harvard University,
Combridge, Massachusctts, undated.

7. M. Cclee-Murcin, "Paradigms for Sentence Recogni-
tion," Report AFHRL-TR-30, System Development
Corporation, Santa Monica, California (1972),

Appendix: Producer-Consumer Experiment

The experiment reported in this appendix concerns
the producer-consumcr facility for cooperation among
alternative parses that 1s alrendy described. The ut-
terance "Screw a big screw in the handle" was parsed
with four slightly different versions of our parser,
All four wversions were successful, and all correctly
understocd the input. Two versions {1 and 3) employed
the producer-consumer mechanism, while the other two
(2 and 4) did not. Two versions (1 and 2) had the
grammar written so that the correct sense of "screw"
wns considered first, while the other two (3 and 4)
considered the "screw-on" sense first. (Version 3 is
discussed in the section on interparse cooperation.
The priorities for the two senses of the verb were
identical; the only chonge was the order in which they

cccurred in the grammar, When the "screw-on" sense
was considered first, the system followed a false path
as far as "Screw a big screw on the" since "in" and
"on" were indistinguishable in the uttersnce. This
path went no further, however, becnuse "handle' was
Instead,
the system resumed work on the "screw-in" sense and
successfully completed the parse, The two versions of
the system considering the "screw-in" sense first did
noet have such problems, They went directly to correct

parses without even predicting "on.™

given a low priority for semantic reasons.

Performance measures (described above) for the
four parses are given in Table A-1. Both versions
considering "secrew-in" first did better than either of
the ones considering “screw-on" first, Of the two
with "in" first, the version without the producer-
consumer mechanism searches scomewhat more {since there
were some opportunities for sharing in the first noun
phrase), but it is still marginally faster because of
the overhead involved with the producer-consumer
mechanism. Of the two with "on" first, the one with
the producer-consumer mechanism is clearly superior,
Benefiting from sharing in both noun phrases, it re-
quires far fewer syntactic and lexical steps, takes
less CPU time, and gencrnlly cutperforms the parse not
using thec mechanism.
the different orderings of the verb senses, the per-
formance with the producer-consumer mechanism is better
and has smoller variance than the performance without
it. The margin of superiority would have been increased
if the vocabulary had been larger and there had been
more false paths., This suggests that the produccr-
consumer appreach, or some related mechamism for co-
operation among competing parses, will be of increasing
value in systems with expanded vocabularies and en—
riched grammars,

Finally, combining results for

STEP CUIULATEVE

NAME PRIORITY PRICRITY
"I NI TSTRING™ .95 95¢,@
QUEST «96 slz2.@
WHQUEST +96 875,52
WHNG « 96 848,4952
QDET + 96 2P6, 8792
WHAT «937 82,6729
*VRFyx 1.4 1995 ,742
“NumM© 95 1840,9%955
ADJNOUN «95 988,.9072
ADJSTRI NG .9 ¥92,8164
“ADY" «93 B845,5156
ADJ «96 Bl},695
0ADJ «96 T779.2272
LITTLE 98 763,6426
*VRFY» 1.6 1221.828
ADJSTRI NG 83 19038.554
“ADV" 95 986,6263
ADJ «96 947.1612
0ADJ «96 999,2 748
BRASS .38 291,8893
*VRFY% 1.6 1425, 743
“ADJSTRI NG™ «95 1354,456
NOUN - .96 130,277
PARTS +95 1235,264
*VRFY» 1.6 1976.422
*FPARSE» 1,8 1976.422
“ENDINGS™ 95 1877.601
FULLFORM 95 1783,.721
AUX 96 1712.372
BEAUX «95 1626,.753
ARE «98 1394,218
*VRFY® 1.138357 1882,236
“VG-MODI FIERS" .95 1711.934
WHSUBJ «98 1677,695
“THERE™ 093 1593,.811
COP «85 1354,1738
PREPCCMPL +96 1399,.549
IR +97 1261,533
VRFY 1.25 I1576.916
ART + 96 1513,.84
THE «38 1483,563
VRFY 1.25 1854,454
“ORD™ «955 1761,731
“Num* .95 1673,644
“ADJSTRI NG* 95 1589,962
NOUN «96 1526.364
BOX 98 1495,836
VRFY= l.6 2393,338
FPARSE 1.0 23%3,338
“ENDI NGS™ «95 2273,671

FIGURE 1. Path for '"What 1little brass parts
are in the box?”

Table 1

EXPERIMENTAL RESULTS

Depth-First Pepth-First
With Map | Best-First | Threshold=500 | Threshold=100

Syntactic and *
lexicnl steps 110 281 590 2,921
Maximum
queued 65 146 . 15 38
Words
predicted 9 121 299 1,396
Words -
attempted g 88 165 434
Words +
f ound 9 26 42 92
LISP nodes 12, 808 26,814 86,481 437,204

E+
CPU time
(min:sec) 1:11 3:31 9:39 47:32

*
The successful path includes 41 syntactic and lexical steps, The
other 69 steps are the immediate syntoctic alternatives along the path.

.'-
The plural ending on "parts" is included as a separate item.

Measurements of CPU time are accurate only to about % 10%.

Table A-1

RESULTS OF PRODUCER-CONSUMER EXPERIMENT

"Screw-In" First| "Screw-On" First
with |without | wWith |Without
* * * *
p=c p-¢ p-c p-c
Syntoctic and
lexical steps 132 156 162 249
Maximum
queued - 72 91 85 131
Words
predicted 26 30 36 67
WYords
attempted 26 25 35 53
Words
found 7 7 9 9
L15P
nodes 22,613 21,781 |24,748 29,498
CPU time
(min:sec) 2:06 1:55 2:20 2:41

»
Producer-consumer mechanlsm.

